

Application of biochar and green compost in cascade

Bart Vandecasteele (ILVO) Closecycle pop-up talk 28/04/2025

Co-funded by the European Union EJP SOIL has received funding from the European Union's Horizon 2020 research and innovation programme: Grant agreement No 862695

Outline

- 1. Introduction: circular horticulture
- 2. Cascade: Wood-based biochar in horticultural substrates
- 3. Cascade: Biochar from spent horticultural substrates
- 4. Cascade: Green compost in horticultural substrates
- 5. Conclusions

1. Introduction: circular horticulture

Renewable and stable C

Renewable and stable C

Circular horticulture: new challenges

New materials

- Wood and bark products
- Plant fibers
- Biochar

New isues

- Microbial: stability, N immobilization, ...
- nutrients

New strategies

- Reuse of (processed) growing media
- Spent growing media => end-of-life: organic soil improver

EJP SOIL Bodemstudiedag Vlaanderen Evropean Joint Programme (กิศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพาศาภาพ

Focus

Cascade

- Use of biomass in cascade to avoid competition for C
- The Cascade Principle (a structured hierarchy)

Chemical characteristics, C content and C stability

Pollutants

Peat-based => peat-reduced => peatfree horticultural substrates

Questions?

2. Cascade: Wood-based biochar in horticultural substrates

Biochar in growing media

Different functions:

g/LDisease suppressionCarrier for biocontrol organisms or nutrients

Liming agent

- 1 vol% Fertilizer
- 5 vol% Perlite replacement
- 10 vol% Bulk material in horticultural substrate
- 100 vol% Stand-alone horticultural substrate

Biochar as an upcycling strategy

Biochar as a cleanup method (pollutants & pathogens)

Or part of system:

Pyrolysis = heating and CO_2 for greenhouse + biochar for growing media

Direct wood-based biochar application in the soil

Cas(cad)e study 1

Full scale trials

- Spent growing media from 2 full-scale greenhouse trials at PCFruit (2021 and 2022):
 - Peat-reduced (50% v/v peat) with 25% v/v green compost and 25% v/v wood fiber
 - Peat-reduced + 10% v/v wood-based biochar
 - Peat-free: 25% v/v green compost, 25% v/v wood fiber, 20% v/v plant fiber, 30% v/v bark compost

in Maria and and and free Maria and free and free

Peat-free + 10% v/v wood-based biochar

Added value of green compost in growing media

- High microbial biomass => improved nitrification
- Fertilizer replacement: P and K
- Lime replacement
- Peat replacement

Make biochar, not war

Wood-based biochars:

Very stable and 'predictable' Pellets or coarser material: can maintain the structure of the substrate Method for "cleaning" biomass Circular material + C-storage?

CO_2 emission or O_2 consumption for screening biological stability

		Spent horticultural substrates	Composted spent horticultural substrates	Biochar from spent horticultural substrates
Number		8	8	8
Organic C	g /kg dry matter			
InorganiC C	g /kg dry matter	Green	Sper horticul	nt tural
CO ₂ release	mmol CO ₂ /kg C/h	compost	SUDSUR	
C/P ratio	_	Wood-based biochar		
total CEC	cmolc/kg dry matter			
	EJP S הרקור הרקור הרק מינה מינה הרקור	OIL Bodemstudiedag Vlaanderen	กลโป้เสราโรส์เวตโป้เสราโร	ป้องไปหละมีระบังจะไปเล

		Spent horticultural substrates without biochar	Spent horticultural substrates with biochar
Number		4+4+4	4+4+4
Organic C	g /kg dry matter	282	349
InorganiC C	g /kg dry matter	1.1 a	0.9 a
CO ₂ release	mmol CO ₂ /kg C/h	3.0	2.1
C/P ratio	-	95	115
total CEC	cmolc/kg dry matter	56	51
EJP SOIL	EJP SOIL Bodemstudieda	ag Vlaanderen สาราราริการสาราราราราราราราราราราราราราราราราราร	การเริ่ม และสุโรก เราะ เป็น เป็น เป็น เป็น เป็น เป็น เป็น เป็น

Cas(cad)e study 1: conclusions

Processing spent horticultural substrates

- Spent organic growing media: rich in stable C
- Added value of composting: only for sanitation goals
- Added value of conversion to biochar?
 - Renewable energy
 - Sanitation, cleaning method
 - Higher inorganic C contents?
 - no higher C stability?
 - No increase in organic C, C/P or CEC

Added value of biochar in spent growing media

- Already effect at 10% v/v biochar => higher C content + higher C stability
- Extra C of biochar is still present in (processed) spent growing media
- Confirmation of previous research on biochar in spent peat-reduced and peat-free substrates: <u>https://doi.org/10.1007/s10705-023-10315-8</u>

EJP SOIL Bodemstudiedag Vlaanderen โกษณีเพิ่มหายามาโคราคาไปโคราคาไปโคราคาไปโคราโคราโปโคราคาไปโคราคาไปโคราคาไปโคราคาไปโคราคาไปโครา

Questions?

3. Cascade: Biochar from spent horticultural substrates

Cas(cad)e study 2

Scenario: wood-based biochar vs. biochar from spent growing media

- 12 wood-based vs.
- 4 bark-based vs. •
- 6 fiber-based biochar vs. •
- Biochar from spent growing media:
 - 7 Peat-based
 - 8 Peat-reduced or Peat-free

		wood- based biochar	Bark biochar	Biochar from plant fibers	Biochar from peat-based substrates	Biochar from substrates with green compost
Number		11	4	6	7	8
Organic C	g /kg dry matter	803 b	790 b	793 b	686 b	284 a
InorganiC C	g /kg dry matter	1.0 ab	0.5 a	1.2 ab	3.3 b	3.3 b
Oxygen Uptake Rate	mmol O ₂ /kg OM/h	1 a	1 a	1 a	2 a	8 b
C/P ratio	-	616 cd	715 d	392 bc	279 b	81 a
total CEC	cmolc/kg dry matter	25	19	33	30	29

Cas(cad)e study 2: conclusions

Processing spent horticultural substrates into biochar

- Biochar from bark or plant fibers are good alternatives for wood-based biochar
- Stability of biochars from spent organic growing media:
 - Risk for lower biological stability when produced at 450°C or lower
 - higher biological stability when produced at 500°C or higher
- Inorganic C contents
 - spent organic growing media: high in Ca and Mg
 - inorganic C is formed during pyrolysis/gasification
 - Both for peat-based and peat-reduced spent growing media

Carbon

Nutrients

RAPID REPORT

Open Access

Wood-based biochars produced at low pyrolysis temperatures are good carriers for a *Trichoderma*-based biopesticide

Jane Debode^{1*}, Jarinda Viaene¹, Kristof Maenhout¹, Lisa Joos^{1,2}, Soraya C. França³, Ann Cuypers⁴ and Bart Vandecasteele¹

Abstract

The goal was to investigate biochars' potential as carrier for commercial *Trichoderma*-based biopesticides, facilitating their application in soil or growing media. Thirty-five biochars produced from various feedstocks and pyrolysis temperatures were chemically characterized. Incubation and cold storage tests using a commercial *Trichoderma*-based

Questions?

4. Cascade: Green compost in horticultural substrates

End-of-life of organic

horticultural substrates?

Cas(cad)e study 3

Scenario 1: green compost vs. spent growing media

- 16 green compost and woody compost from commercial composting plants
- Spent growing media from 8 full-scale greenhouse trials or from growers:
 - 19 Peat-based
 - 15 Peat reduced:
 - 7 Peat-reduced with green compost (10-25% v/v), wood fiber, plant fiber, bark compost, coir
 - 8 Peat-free with green compost (10-25% v/v), wood fiber, plant fiber, bark compost, coir
- 12 composted spent growing media

		Green compost	Peat-based spent horticultural substrate	spent horticultural substrates with green compost	Composted spent horticultural substrates
Number		16	19	15	12
Organic C	g /kg dry matter	242 a	445 c	354 b	354 b
Inorganic C	g /kg dry matter	2.3 c	0.5 a	1.1 b	0.9 b
CO ₂ release	mmol CO ₂ /kg C/h	7 b	1a	2 a	2 a
Oxygen Uptake Rate	mmol O ₂ /kg OM/h	6 b	2 a	2 a	2 a
C/P ratio	-	126a	542 b	231 a	161 a
total CEC	cmolc/kg dry matter	41 a	97 c	63 b	73 b

Questions?

5. Conclusions

Renewable biomass: use it wise thus use it twice?

Green compost

- green waste => composting => product
- Bulk material in horticultural substrates, can replace lime and fertilizers
- Then use spent horticultural substrates as C-rich soil improver

Biochar

- Feedstock => Pyrolysis/gasification => products
- Renewable energy + CO_2 + biochar
- Biochar: bulk material in horticultural substrates
- Then use spent horticultural substrates as C-rich soil improver
- C stability: direct vs indirect, and short- versus long-term (priming effects)

EJP SOIL Bodemstudiedag Vlaanderen โต ไปประการ มีโครโต ไปประการไปการ เป็นโครโต ไปประการได้ เป็นโครโต ไปประการไปประการไปประการในประการไป

Cas(cad)e study: Circular horticulture + soil application

Renewable horticultural substrates vs. green compost

- Higher C content and higher C stability
- Lower inorganic C content: Lower lime replacement value
- More C per unit P
- No dead matter: both are a source of microbial biomass

Biochar from spent horticultural substrates vs. wood-based biochar

- Biochar from bark or strawlike fiber = wood-based biochar
- Peat based biochar > renewable substrate based biochar
- Higher inorganic C content: higher lime replacement value
- Biochars from horticultural substrates produced at 400-450°C: lower C stability

เลยไปโดยโตสไปโดยไต้สไสสปปิโดยโตสโตสปปิโดยไตปปิโดยโตสไปโดยโตสโตสปิโดยโตสโตสโตสโตสโต

• C per unit P: variable but still high

Circular horticulture vs. Soil-friendly practices

There is a link! Spent organic horticultural substrates = C-rich soil improver

Using biochar and green compost in a cascade Avoids competition for this biomass

More info?

Biochar in growing media

Webinar: <u>https://www.youtube.com/watch?v=R9kB-F54Tow</u> Paper: <u>Towards environmentally sustainable growing media for strawberry cultivation: Effect of biochar and</u> fertigation on circular use of nutrients - ScienceDirect (open access)

Microbial activation of biochar

Webinar: <u>https://www.youtube.com/watch?v=_qdJGDUvZ_4</u> Paper: <u>S-enhanced microbial activation of biochars and processed grass fibers for circular horticulture -</u> <u>ScienceDirect</u> (open access)

The repeatability of reusing horticultural substrates

Webinars:

https://youtu.be/McoTPzB-47Q?si=R1Qsp_S6udXyk9Dt https://youtu.be/6Qdt0UU9bzQ?si=He4jNqQiUuFds_DN https://youtu.be/EFb9Iid-2Mg?si=e0TWbg_v0vqN4TaH https://youtu.be/TI3SFJ2VUmY?si=yYcjLHxr4Q4RgNqq

Questions?

