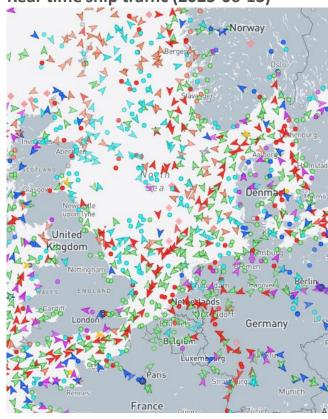


A TRAIT-BASED FRAMEWORK TO IDENTIFY MARINE INVERTEBRATES VULNERABLE TO UNDERWATER NOISE

Anna-Sara Krång^{1,2}, Arienne Calonge³, Elisabeth Debusschere³, Karen de Jong⁴, Merel den Held⁵, Joseph Schnitzler⁷

¹ IVL Swedish Environmental Research Institute, ² Kristineberg Center for Marine Research and Innovation; anna-sara.krang@ivl.se



Challenge: noise pollution

The North Sea

Real-time ship traffic (2025-06-13)

MarineTraffic.com

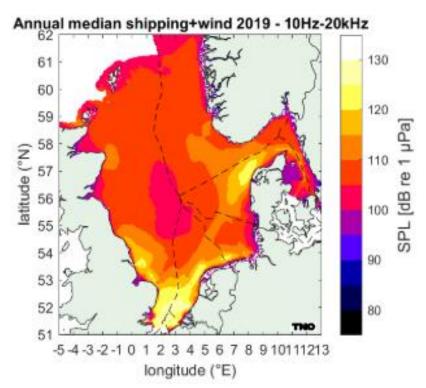


Fig. de Jong et al. (2022)

Challenge: noise pollution

The North Sea

Risk assessment of noise pollution

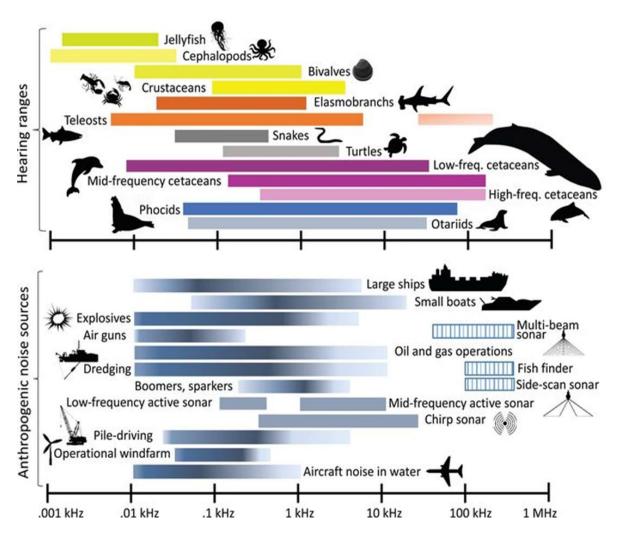
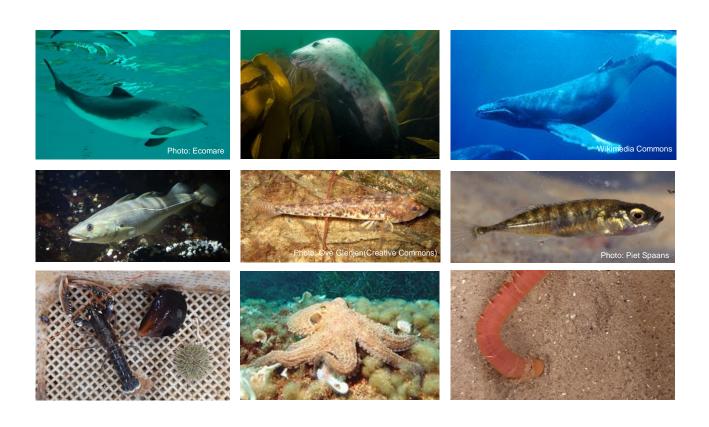



Fig. Duarte et al. (2021)

Risk assessment of noise pollution

Risk assessment of noise pollution

EU's TG NOISE Assessment procedure

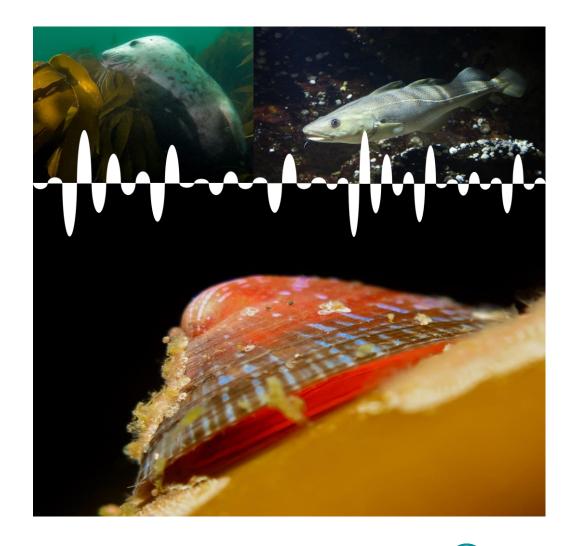
- Step 1. Define indicator species and their habitats
- Step 2. Define the level of onset of biologically adverse effects (LOBE)
- Step 3. Determine time periods for assessment
- Step 4. Assess the acoustic status by monitoring
- Step 5. Establish the reference condition
- Step 6. Establish the current condition
- Step 7. Evaluate the condition of the grid cells
- Step 8. Determine the status of the habitats
- Step 9. Assess the status of the marine reporting unit as being GES or not GES

Borsani et al. (2023)

DEMASK

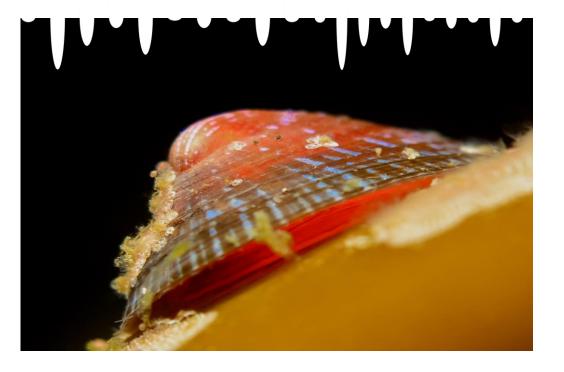
Contribute to a well-managed North Sea soundscape and protection of the marine environment

DEMASK - Development and evaluation of noise management strategies to keep the North Sea healthy (2024-2026)



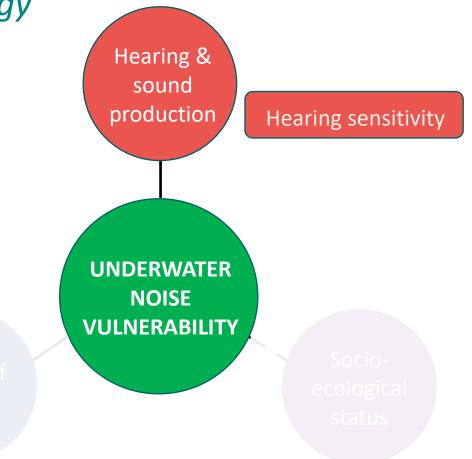
Identify and select indicator species Objective

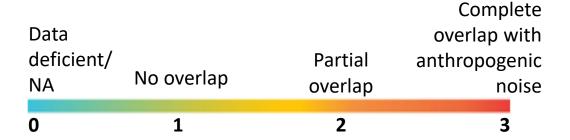
- Develop a framework for assessing the relative vulnerability of species to underwater noise
- Identify and select species in the North Sea that are most vulnerable to underwater noise, to be used as indicator species for environmental risk assessment



Methodology Hearing & sound production **UNDERWATER NOISE** VULNERABILITY Socio-Impact of

noise




ecological

status

Methodology

Primarily sensitive to low-frequency sounds
 <500 Hz (up to a few kHz)

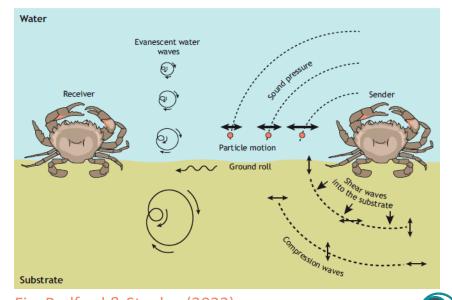
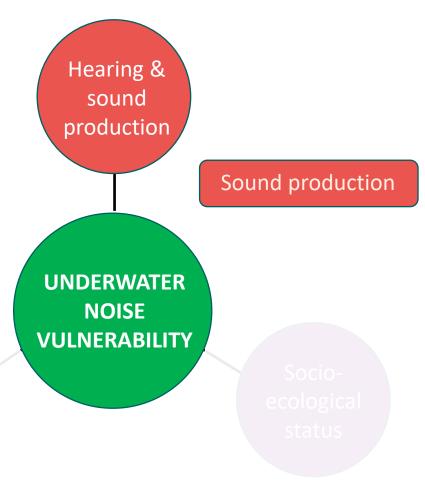
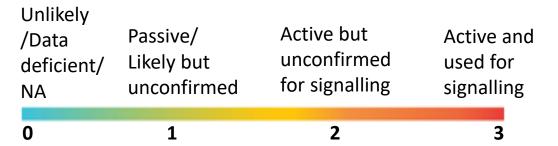




Fig. Radford & Stanley (2023)

Methodology

The capacity to produce sounds is only known in 3 groups of marine invertebrates: crustaceans, bivalves and echinoderms

Methodology

Hearing & sound production

Impact of noise

UNDERWATER
NOISE
VULNERABILITY

Socioecological

Data Reported implications for deficient/ non-negative survival and fitness

1 2 3

Acoustic masking: Increased number of agonistic sounds when high levels of vessel noise (*European lobster*) (Jezequel et al. 2021)

Negative effects

shown with

Methodology

implications for Reported Data survival and deficient/ non-negative fitness response NA 2 0

Impact of continuous noise

Impact of

noise

NOISE

UNDERWATER VULNERABILITY

Behavioural effects:

- Triggered larval settlement (barnacles, blue mussel, oyster, scallop, sea squirt) (e.g. Stanley et al. 2014, Jolivet et al. 2016)

Negative effects

shown with

- Impaired shell-quality assessment (hermit crab) (Tidau & Briffa, 2019)
- Impaired mating behaviour (*shore crab*) (Rising et al. 2022)

Changes in morphology:

- Reduced ability to camouflage by change of shell colour (juvenile shore crab) (Carter et al. 2020)

Methodology

Hearing & sound production

VULNERABILITY

UNDERWATER NOISE

Impact of noise

Impact of

impulsive noise

Socioecologic Data Reported implications for deficient/ non-negative survival and fitness

1 2 3

Acoustic trauma: Physical damage to the auditory system (cuttlefish, octupus, squid)

(André et al. 2011, Solé et al. 2013, 2022)

Negative effects

shown with

Mortality of crustacean zooplankton (*krill, copepods*) (McCauley et al. 2017, Vereide et al. 2023)

Methodology

Hearing & sound production

Impact of continuous noise

Impact of impulsive noise

Impact of noise

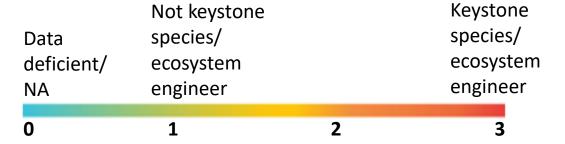
UNDERWATER NOISE VULNERABILITY

ecological

No negative effects shown with effects implications for deficient/ NA noise exposure fitness

Negative effects shown with implications for survival and fitness

- Behavioural effects:
- Impaired/induced anti-predator responses
 (cuttlefish, European lobster juveniles, shore crab)
- Impaired foraging (shore crab, prawn, copepod, blue mussel)
- Reduced burrowing and bioturbation
 (Norway lobster, amphipods, brittle star, lugworm)



Methodology

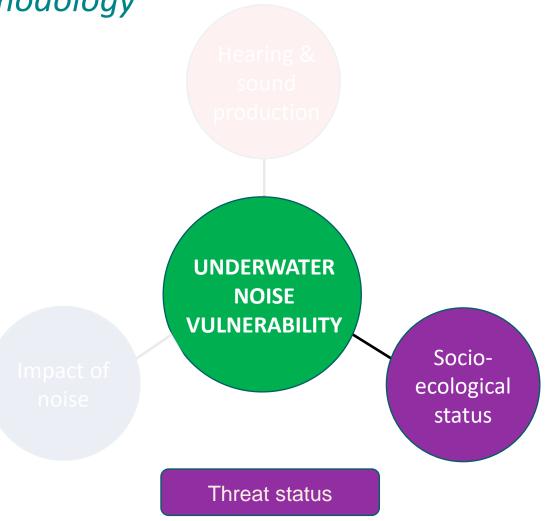
Hearing & sound production

Keystone species

- Dominant food source
- Important predators

Ecosystem engineers

- Efficient filtrators, reducing the nutrient load
- Offering habitats for increased biodiversity
- Bioturbate and oxygenate the seafloor



Methodology

0	1	2	3
deficient/ NA	LC	or LC but indicated population decline	CR or EN
Data		VU or NT,	

Methodology

Hearing & sound production

UNDERWATER
NOISE
VULNERABILITY

Socioecological
status

Data
deficient/
NA
Low

more prominent in
local commercial
fisheries, or
recreational fishing
but high price

High

2
3

Medium:

Shore crab (Carcinus maenas)
Common hermit crab (Pagurus bernhardus)
Purple acorn barnacle (Amphibalanus amphitrite)
Brittle star (Amphiura filiformis)

Krill (Euphausia spp.)
Lugworm (Arenicola marina)

Sea squirt (*Ciona intestinalis*)
Copepod (*Acartia tonsa*)

Norway lobster (Nephrops norvegicus)

Edible crab (Cancer pagurus)
Brown shrimp (Crangon crangon)
Common cuttlefish (Sepia officinalis)
Common octopus (Octopus vulgaris)

European squid (Loligo vulgaris)
European lobster (Homarus gammarus)
Common prawn (Palaemon serratus)
Blue mussel (Mytilus edulis)
Pacific oyster (Magallana gigas)
European/Flat oyster (Ostrea edulis)
Great scallop (Pecten maximus)

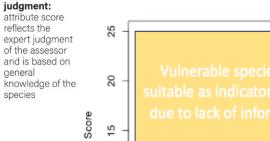
Allalanda DEMASK

Commercial value

Methodology Hearing & sound production Hearing sensitivity Sound production Impact of continuous noise Impact of **UNDERWATER** impulsive noise **NOISE VULNERABILITY** Socio-Impact of ecological noise status Ecological importance Threat status Commercial value

0	1	2	3
NA	Low	Medium	High
deficient/			
Data			

Identify and select indicator species Methodology


			Low	Medium	High
	Hearing range	Data deficient or NA	No overlap of hearing frequency range with anthropogenic noise	Partial overlap of hearing frequency range with anthropogenic noise	Complete overlap of hearing frequency range with anthropogenic noise
	Hearing range	0	1	2	3
	Sound production	Unlikely to produce sound/Data deficient or NA	Produces passive sound under natural conditions or likely to produce sound but unconfirmed	Actively produces sound, but sound production is unconfirmed for acoustic signalling	Actively produces sound used for acoustic signalling
tributes	Impact of impulsive noise	OFINA	No reported negative response attributed to sound exposure	2	Negative impacts shown with implications for survival and fitness 3
Noise vulnerability attributes	Impact of continuous noise	Data deficient or NA	No reported negative response attributed to sound exposure		Negative impacts shown with implications for survival and fitness
	Ecological importance of the species	Data deficient or NA	Species not considered of relatively high ecological importance		Potential keystone species/ecosystem engineer in the North Sea
Nois	Threat status	Data deficient or NA	1 Low concern (LC)	Not threatened (NT), vulnerable (VU) or LC but population declines indicated	3 Endangered (EN) or critical (CR)
	imeat status	0	1	2	3
	Commercial value in	Data deficient or NA	Low commercial value	Medium commercial value	High commercial value
	the North Sea	0	1	2	3

Data quality score

0 No data: no information on which to base an attribute score

Expert

- For each vulnerabity attribute, species were assigned a score from low to high
- Combined with a data quality score estimating the reliablity of the data used for vulnerability scoring

Vulnerable species suitable as indicator species with high quality information

Limited data:

ability

10

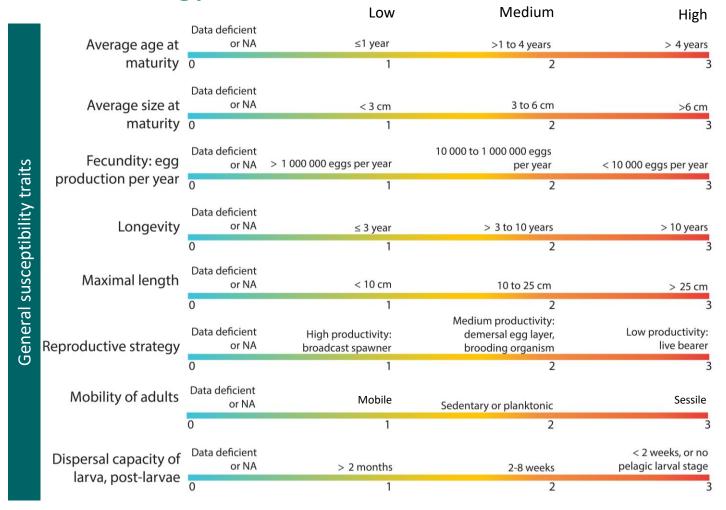
0

data is based or 2 related/similar species or the reliability of the source may be limited

Data Quality Score

15

Adequate


data: score is B based on data that has been observed. modelled or empirically measured

20

25

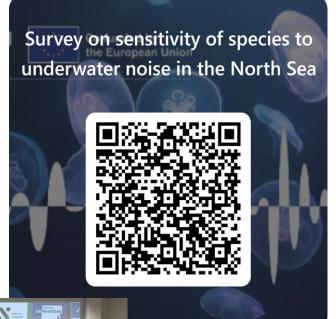
Identify and select indicator species Methodology

PRODUCTIVITY

and

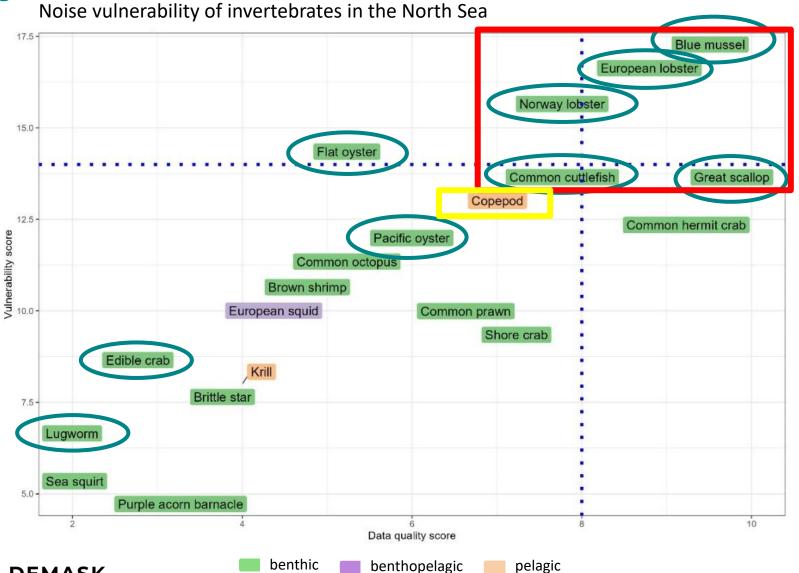
MOBILITY

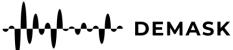
for estimation of species'

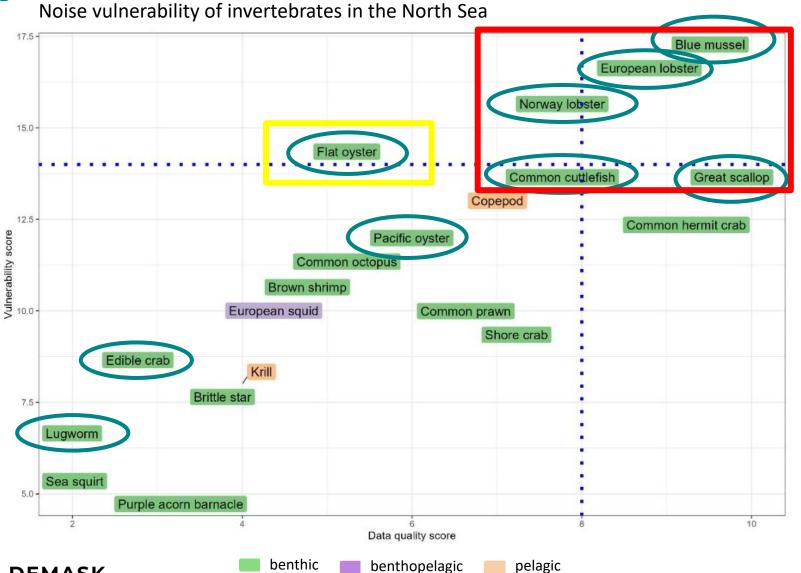

general susceptibility

Identify and select indicator species Methodology

- Literature review identified 20 invertebrate species from the North Sea region where data was available for vulnerability scoring (3 cephalopods, 10 crustaceans, 4 bivalves, 1 Ascidia, 1 Annelida, 1 Echinodermata)
- Literature-based scoring of noise vulnerability, data quality and general susceptibility
- 3. Vulnerability scoring by experts, via
 - a. Online survey
 - **b. DEMASK workshop** Bioacoustics Day, Oct 2024

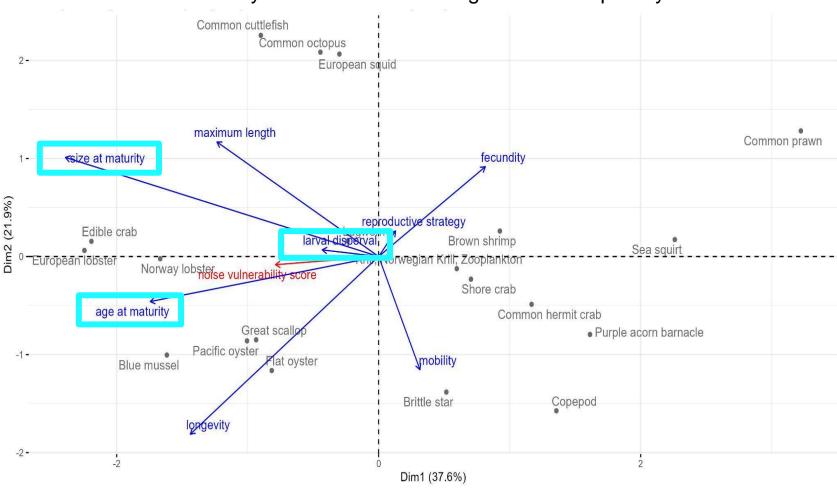



Results


species that scored high for general susceptibility

- Blue mussel, European lobster and Norway lobster received the highest noise vulnerability and data quality scores
- Also common cuttlefish and great scallop received high noise vulnerability and data quality scores
- All five species also received high score for general susceptibility


Results

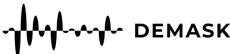

species that scored high for general susceptibility

- Blue mussel, European lobster and Norway lobster received the highest noise vulnerability and data quality scores
- Also common cuttlefish and great scallop received high noise vulnerability and data quality scores
- All five species also received high score for general susceptibility
- Potentially vulnerable species could not be fairly assessed due to limited data

Principal Component Analysis relating noise vulnerability to the different life-history traits used to assess general susceptibility

Noise vulnerability foremost correlated with:

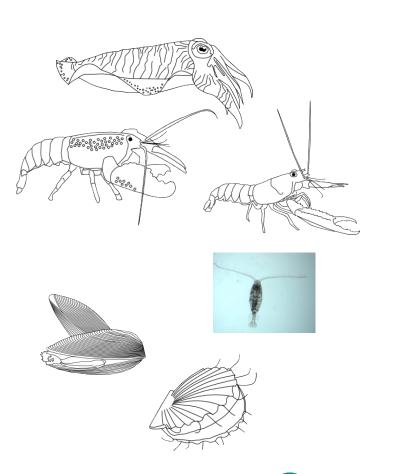
- high age at maturity
- large size at maturity
- low larval dispersal ability


But also:

- large size
- longer lifespan

Not correlated with:

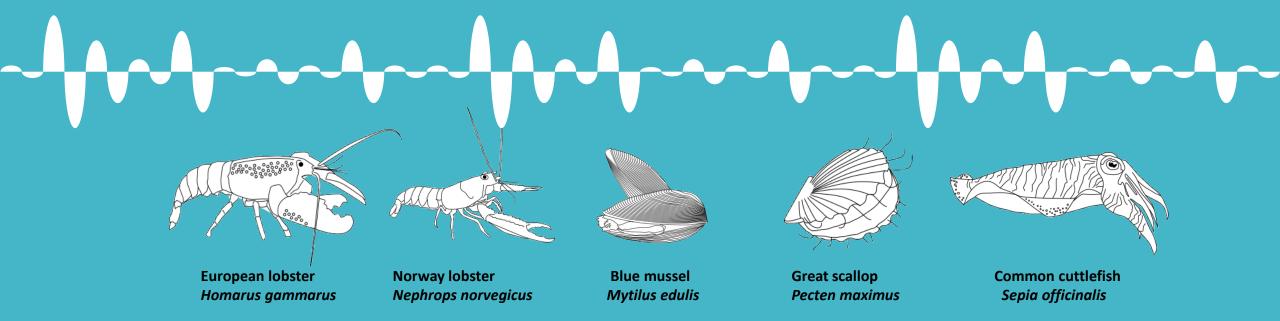
- fecundity
- reproductive strategy
- mobility of adults

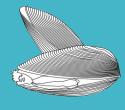


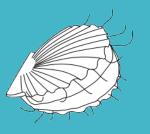
Low	Medium	High	
< 1	> 1 to < 2	> 2	

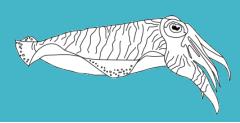
Summary of all score categories

Species group	Species	pelagic or benthic (adults)	Average Noise Vulnerability Score	Average Data Quality Score	Average General Susceptik Score	oility
Cephalopoda	Common cuttlefish (Sepia officinalis)	benthic	2.0) :	2.00	2.25
	Common octopus (Octopus vulgaris)	benthic	1.5	7	1.25	1.88
	European squid (Loligo vulgaris)	benthopelagic	1.4	3	1.25	1.75
Crustacea	European lobster (Homarus gammarus)	benthic	2.43	3 :	2.25	2.50
	Norway lobster (Nephrops norvegicus)	benthic	2.29	9 :	2.00	2.50
	Edible crab (Cancer pagurus)	benthic	1.2	9 (0.75	2.13
	Shore crab (Carcinus maenas)	benthic	1.2	9 :	1.75	1.63
	Common prawn (Palaemon serratus)	benthic	1.43	3	1.50	1.13
	Common hermit crab (Pagurus bernhardus)	benthic	1.7	<mark>1</mark>	2.25	1.63
	Brown shrimp (Crangon crangon)	benthic	1.5	7 :	1.25	1.88
	Krill (Euphausia spp.)	pelagic	1.1	<u>4</u>	1.00	1.38
	Purple acorn barnacle (Amphibalanus amphitrite)	benthic	0.7	1 :	1.00	1.75
	Copepod (Acartia tonsa)	pelagic	1.8	5	1.75	1.50
Bivalvia	Blue mussel (<i>Mytilus edulis</i>)	benthic	2.4	3 :	2.25	2.13
	Pacific oyster (<i>Magallana gigas</i>)	benthic	1.7	1	<mark>1.50</mark>	2.13
	Flat oyster (Ostrea edulis)	benthic	2.0	0	<mark>1.25</mark>	2.25
	Great scallop (Pecten maximus)	benthic	2.0) :	2.50	2.00
Ascidia	Sea squirt (<i>Ciona intestinalis</i>)	benthic	0.7	1 (0.50	1.88
Annelida	Lugworm (Arenicola marina)	benthic	1.0	<mark>o</mark> (0.50	2.13
Echinodermata	Brittle star (Amphiura filiformis)	benthic	1.1	4	1.00	1.63



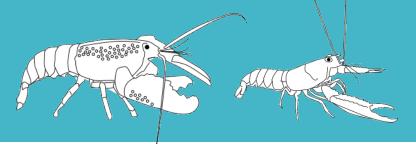


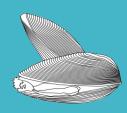

Potential invertebrate indicator species

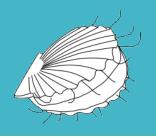

For the North Sea

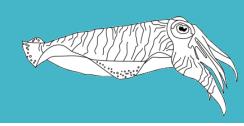
European lobster Homarus gammarus

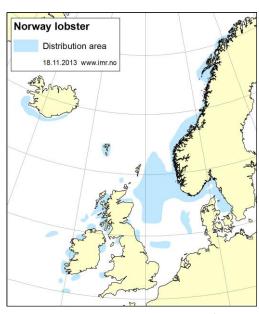
Norway lobster
Nephrops norvegicus

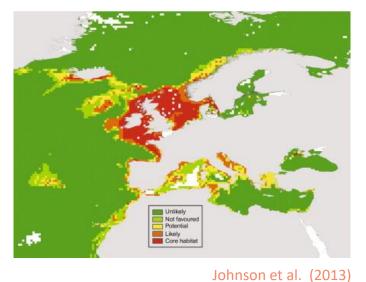

Blue mussel *Mytilus edulis*

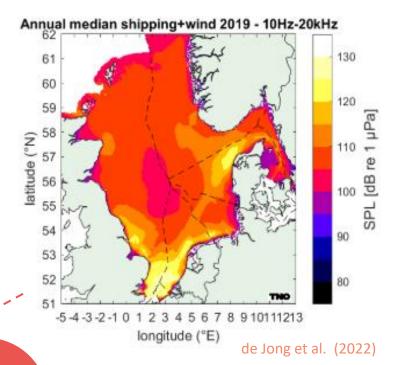

Great scallop
Pecten maximus


Common cuttlefish Sepia officinalis



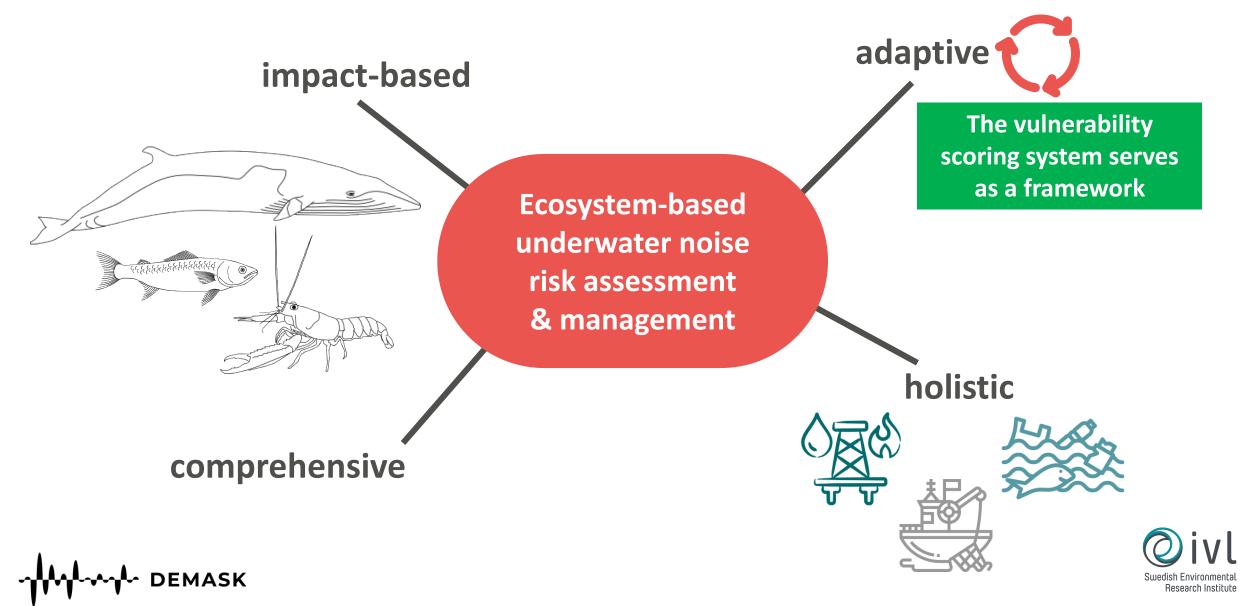


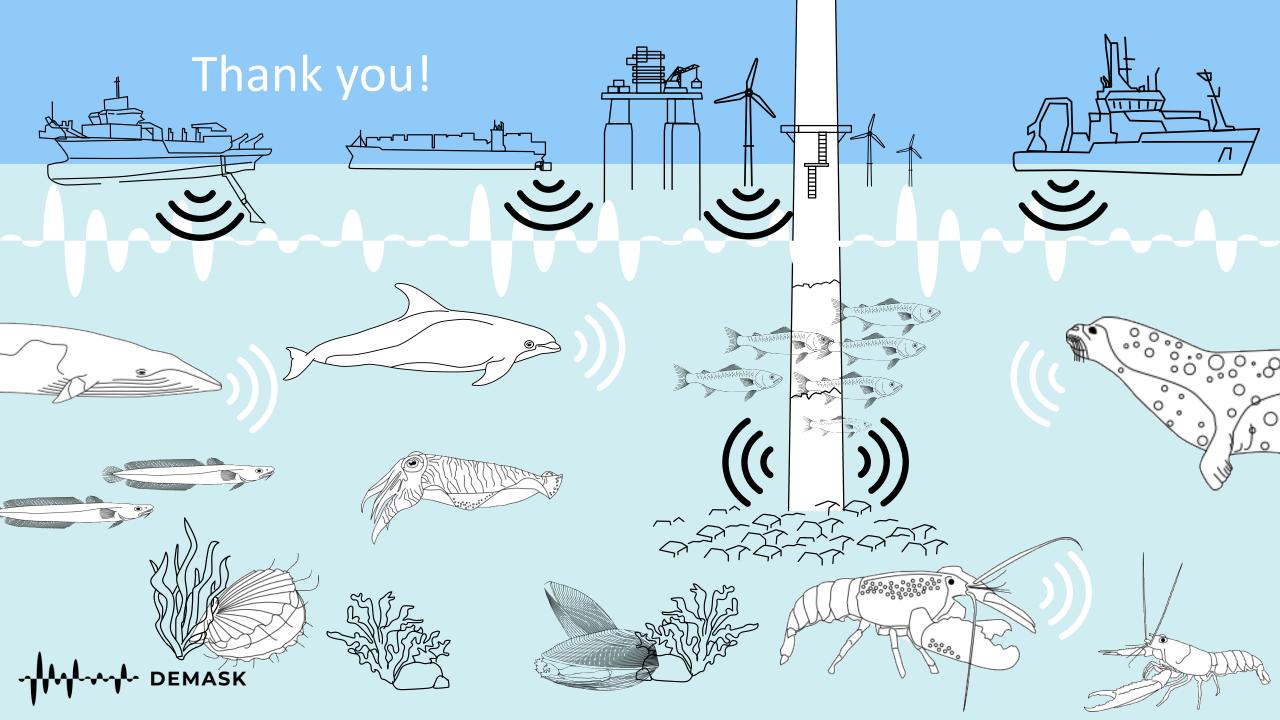



	European lobster Homarus gammarus	Norway lobster Nephrops norvegicus	Blue mussel Mytilus edulis	Great scallop Pecten maximus	Common cuttlefish Sepia officinalis
Hearing sensitivit	80 to 250 Hz*	20-180 Hz	5 - 410 Hz	20 - 1000 Hz*	<400 Hz
Sound production	55-180 Hz n agonistic behaviour	Likely but unconfirmed	Likely but unconfirmed	20–27 kHz valve movements	No studies available
Impact of impulsive noise		Behavioural, Physiological, Larval development	Behavioural, Physiological*	Physiological, Larval development	Acoustic trauma, Behavioural, Egg & larval development
Impact of continuous noise	Ç,	Behavioural	Behavioural, Physiological	Physiological, Larval development & survival	Acoustic trauma, Behavioural, Egg & larval development
Ecologica importan		Yes ecosystem engineer	Yes ecosystem engineer	Less	Less
Threat status	Least concern (LC) but high fishing pressure & depleted popuations	Least concern (LC)	Least concern (LC) but declining populations & habitats	Least concern (LC)	Least concern (LC)
Commerc value	ial Medium, high price, mainly recreational fishing	High	Medium, commercially cultured	Medium, high price, locally fished & cultured	High

Outlook

- Distribution/habitat maps for indicator species
- Overlaid with sound level maps for baseline and future policy scenarios
- Identify threshold values for biologically significant adverse effects
- Evaluate the fraction of habitats where thresholds are exceeded
- Assess the effects of noise on indicator species for different management strategies


www.imr.no


underwater noise risk assessment & management

Final remark and overall goal

